Q1. (a)	Baryons,	mesons and	leptons are	affected I	by particle	interactions.
-4 ()	, ,)	

Write an account of these interactions. Your account should:

- include the names of the interactions
- identify the groups of particles that are affected by the interaction

The quality of your written communication will be assessed in your answer.

- identify the exchange particles involved in the interaction
- give examples of **two** of the interactions you mention.

(6)	

(b) Draw a labelled diagram that represents a particle interaction.

(Total 9 marks)

Q2.(a) Complete the following equation for beta minus (β^-) decay of 90 strontium-90 (38 Sr) into an isotope of yttrium (Y).

$${}^{90}_{38}Sr \longrightarrow \quad {}^{\cdots\cdots}_{\cdots\cdots}Y \quad + \quad {}^{\cdots\cdots}_{\cdots}\beta^- \quad + \quad {}^0_0 \dots \dots$$

(3)

leca	ositive kaon consists of an up quark and an antistrange quark $(u\overline{s})$. This kaon by strong and weak interactions into three pions. Two of the pions have k compositions of $(u\overline{d})$. The third pion has a different quark composition.
i)	Name the unique family of particles to which the kaon and pions belong.
ii)	Tick the box corresponding to the charge of the third pion.
,	
	positive negative neutral
iii)	Positive kaons have unusually long lifetimes. Give a reason why you would expect this to be the case.
(iv)	Name the exchange particles which are involved in the strong and weak interactions of the kaon.
	strong interaction
	weak interaction
	(Total S

Q3.(a) Complete the table comparing some of the properties of the positive pion, $\pi^{,}$ and the proton.

Name	$\pi^{\scriptscriptstyle +}$	Proton
Relative charge	+1	
Baryon number		
Quark composition		

(5)

(b) When a positive pion interacts with a proton, a kaon can be produced, along with another strange particle, as shown in this equation

$$\pi^{\scriptscriptstyle +} + p \longrightarrow K^{\scriptscriptstyle +} + X$$

Circle the type of interaction shown in this equation.

Electromagnetic Gravitational Strong Nuclear Weak Nuclear

(1)

(c) Deduce the relative charge, baryon number and strangeness of particle $\boldsymbol{X}.$

(3)

(d) Particle X can decay to produce a neutron and positive pion as shown in this equation

$$X \to n + \pi^{\scriptscriptstyle +}$$

Circle the type of interaction shown in this equation.

Electromagnetic Gravitational Strong Nuclear Weak Nuclear

(e)	Explain your answer.	
		(2)
		(-/
(f)	The neutron and positive pion will then decay. The positive pion can decay into a positron and an electron neutrino.	
	Write down the equation for the decay of the neutron.	
		(2)
		(2)
(g)	Explain why no further decays occur.	
		(2)
	(Total 16 m	

Q4.What are the numbers of hadrons, baryons and mesons in an atom of ⁷3Li?

	hadrons	baryons	mesons	
Α	7	3	3	0
В	7	4	4	0

С	7	7	0	0
D	10	7	0	0

(Total 1 mark)

		.			
Q5.Which	of the	tollowing	İS	not	true?

- A Each meson consists of a single quark and a single antiquark.
- **B** Each baryon consists of three quarks.
- C The magnitude of the charge on every quark is $\frac{1}{3}$
- A particle consisting of a single quark has not been observed.

(Total 1 mark)

Q6.Mesons that contain a strange (or antistrange) quark are known as K-mesons or kaons. Mesons are a sub-group of a larger group of particles.

(a) (i) State the name of this larger group of particles.

(1)

(ii) Determine the charge on a kaon with a quark structure of us.

(1)

(b) A proposed decay for this kaon is

 $u\bar{s} \longrightarrow \mu^+ + \nu_\mu$

(i) Apply the law of conservation of strangeness to the proposed decay.

					•
					(1)
(ii) (Comment on whe	ther or not this o	lecay is possible.		
· ,					
					(1) (Total 4 marks)
>7 (-) 7	Taa kabla wii saa inf				
			some fundamental	particles.	
Comp	lete the table by fi	lling in the miss	ing information.		
particle	quark structure	charge	strangene	baryon number	
	uud		0		
Sigma ⁺	uus	+ 1			
	ud		0	0	
					(7)
<i>a</i> > - .					
(b) Each	of the particles in		•		
, ,	O: ·	e of a baryon pa	irticle and its corre	esponding antipart	icle
(i)	Give one example	•			
(i)	-	•			
(i)	particle				

(ii) State the quark structure of an antibaryon.

		(1)
(iii)	Give one property of an antiparticle that is the same for its corresponding particle and one property that is different.	
	Same	
	Different	
		(2)
	(Total 11 m	•